
Effective Code Reviews

David Forshner
DForshner@gmail.com

Why have code reviews?

What are some benefits of code reviews?

● Knowledge sharing
● Proofreading – Hard to spot problems when reading your own work.
● Redefining “done” – The code both works and someone unfamiliar with the

work can figure out what it does.
● Converge towards a common set of language features, idioms, libraries,

design patterns, etc.
● Move away from personal/team ownership of “the code”.

What are some limitations of code reviews?

● Only seeing a tiny facet of a much larger system.
● Hard to see higher level (class/project) duplication of functionality/data.
● Reviewers outside of a team probably can’t spot problems with

domain/business logic.
● Probably too late to address design and/or major structural problems.

What are some anti-patterns?

● Bikeshedding/Wadler's law - Getting stuck on trivial stuff while larger issues
are ignored.

● Intellectual Violence – “someone who understands a theory, technology, or
buzzword uses this knowledge to intimidate … may happen inadvertently due
to the normal reticence of technical people to expose their ignorance.”

● Focusing on how you would have done it.
● Public shaming

How to Find Issues

Where to spend your time
I have no idea what this does

● Focus on changed code in isolation.
● Can I get a rough idea of what this code is

doing?
● Are there confusing names or comments?
● Are there opportunities to simplify and/or

reduce the amount of code.
● Are there style problems with syntax,

indentation, spacing, etc.

I know this domain/project

● Focus on how the change fits with the rest
of project.

● Does the class/interface design fit with
the rest of the project?

● Are there errors in the domain(business)
logic?

● Is there duplication?
○ Functionality
○ Information (single source of truth)

● How is this going to perform?
○ Ex: How many database/network calls are

triggered each time this runs?

Read a book/take a course

Pretend to be: A maintenance programmer

• Magic
return -44; // _(ツ)_/¯

• Confusing or misleading naming/comments
// Get from DB or web service
Order cat = CreateCustomer();

• Less lines of code!
return vals.Select(x => x.ToUpper()).Where(x => validVals.Con…

• Precedence/order of operations puzzles
if ({ a == true || { { { b == true && c == false } || { c = …

Pretend to be: A computer

• Are there execution paths that lead to unexpected states/edge cases?
var cat = GetCats.FirstOrDefault();
var name = cat.Name;

• Are there misleading checks?
var cats = GetCats.ToList();
if (cats == null)

• Is it “efficient enough”?
foreach(var cat in allTheCatsInTheEntireWorld) {

Owner servant = context.FindById(cat.Id).Owner;
Address palace = context.FindById(cat.Id).Address;

Pretend to be: Someone who unit tests

• Can I fake or mock the dependencies?
public Cat MethodIWantToTest(CatShow show) {

var today = DateTime.Now;
Cat current = StaticGlobalSingleton.GetWinner(show.Id, date);

 var lastyear = today.AddYear(-1);
Cat previous = new HistoryDbAccessThing.GetWinner(show.Id, today);

• Can I tell why they wrote this test?
[TestMethod]
public void RadiationLevel() {

ReactorControl a = new ReactorControl(0.4443, “S2");
Assert.AreEqual(0.042, a.RadiationLevel);

How to Comment

Constructive Criticism

Prefer
• Impersonal – This/the code
• Explaining the “why” –
Consider X because Y

• Providing examples
• Asking questions - Is this
used?

Avoid
• Personal – You/your code
• Focusing on what people can
and cannot do (enforcement).

• Implying someone “should
know this”

Selling it (encouraging laziness)

• Two facts I made up:
• 80% of code will need multiple changes over its lifetime.
• 80% of developers can’t remember what they wrote a month ago

• Long term laziness
DRY

Less Code

Terse

Obvious Intent

Expressive

Simple

One thing at a time

One-liner

var bobCat = null;
foreach(var cat in cats) {

if (cat.Name == “Mr. Bob")
bobCat = cat;

}

var bobCat = cats.FirstOrDefault(x => x.Name == “Mr. Bob");

Simpler/Less code/More obvious

var food = null;
if (cat.Age < ONE_YEAR)

food = new KittenStuff();
else

food = new RegularStuff();

var food = (cat.Age < ONE_YEAR) ? new KittenStuff() : new RegularStuff();

Show intent/reduce coupling

if (cat.Type == 3 && cat.Status == "H")

if (cat.Type == CatTypes.PUREBRED && cat.Status == HEALTHY)

if (cat.isEligibleForShow)

(did I mention a good book?)

End

